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Abstract 18 

We present a new and improved version (V4.0) of the NASA standard nitrogen dioxide (NO2) 19 

product from the Ozone Monitoring Instrument (OMI) on the Aura satellite. This version 20 

incorporates the most salient improvements for regional OMI NO2 products suggested by expert 21 

users, and enhances the NO2 data quality in several ways on a global scale through improvements 22 

to the air mass factors (AMFs) used in the retrieval algorithm. The algorithm is based on a 23 

conceptually new, geometry-dependent surface Lambertian equivalent reflectivity (GLER) 24 

operational product that is available on an OMI pixel basis. GLER is calculated using the vector 25 

linearized discrete ordinate radiative transfer (VLIDORT) model, which uses as input high 26 

resolution bidirectional reflectance distribution function (BRDF) information from NASA’s Aqua 27 

Moderate Resolution Imaging Spectroradiometer (MODIS) instruments over land and the wind-28 

dependent Cox–Munk wave-facet slope distribution over water, the latter with contribution from 29 

the water-leaving radiance. The GLER combined with consistently retrieved oxygen dimer (O2-30 

O2) absorption-based cloud fractions and pressures provide high-quality data inputs to the new 31 

NO2 AMF scheme. The new AMFs increase the retrieved tropospheric NO2 by up to 50% in highly 32 

polluted areas; these differences arise from both cloud and surface BRDF effects as well as biases 33 

between the new MODIS-based and previously used OMI-based climatological surface reflectance 34 

data sets. We quantitatively evaluate the new NO2 product using independent observations from 35 

ground-based and airborne instruments. The improved NO2 data record can be used for studies 36 

related to emissions and trends of nitrogen oxides (NOx) and co-emitted gases. The new V4.0 data 37 

and relevant explanatory documentation are publicly available from the NASA Goddard Earth 38 

Sciences Data and Information Services Center 39 

(https://disc.gsfc.nasa.gov/datasets/OMNO2_V003/summary/), and we encourage their use over 40 

previous versions of OMI NO2 products. 41 
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Introduction 42 

The Dutch/Finnish-built Ozone Monitoring Instrument (OMI) on the NASA EOS-Aura satellite 43 

and its international science team are part of a successful multi-institutional, multi-national 44 

collaborative program in the measurement of atmospheric composition (Levelt et al., 2006, 2018). 45 

The primary objectives of OMI’s mission are to continue the long-term record of total column 46 

ozone and to monitor other trace gases relevant to tropospheric pollution worldwide. Observations 47 

of sunlight backscattered from the Earth over a wide range of UV and visible wavelengths (~260-48 

500 nm) made by OMI allow for the retrieval of various atmospheric trace gases, including 49 

nitrogen dioxide (NO2). NO2 is a critically important short-lived air pollutant originating from both 50 

anthropogenic and natural sources. It is the principal precursor to tropospheric ozone and a key 51 

agent for the formation of several toxic airborne substances such as nitric acid (HNO3), nitrate 52 

aerosols, and peroxyacetyl nitrate. Satellite-based observations yield a global, self-consistent NO2 53 

data record that can complement field measurements. 54 

During more than 15 years of operation, OMI has provided a unique, practically uninterrupted 55 

daily NO2 data record that has been widely used for atmospheric research and applications, 56 

accentuating demands for accurate NO2 data products. The power of OMI to track NO2 pollution 57 

is demonstrated through observations of enhanced column amounts over polluted industrial areas 58 

(e.g., Boersma et al., 2011; Lamsal et al., 2013; Krotkov et al., 2016; Kim et al., 2016; Cai et al., 59 

2018; Montgomery and Halloway, 2018), weekly patterns with significant reduction on weekends 60 

following energy usage (e.g., Ialongo et al., 2016), and seasonal patterns (e.g., van der A et al., 61 

2008) that reflect changes in NOx emissions and photochemistry (e.g., Shah et al., 2019). 62 

Exploiting the close relationship between NOx emissions and tropospheric NO2 columns, OMI 63 

NO2 data have been used to detect and quantify the strength and trends of NOx emissions from 64 

power plants (Duncan et al., 2013; de Foy et al., 2015; Liu et al., 2019), ships (e.g., Vinken et al., 65 

2014a), lightning (e.g., Picketing et al., 2016), soil (e.g., Vinken et al., 2014b), oil and gas 66 

production (e.g., Dix et al., 2020), forest fires (Schreier et al, 2014), and other area sources such 67 

as cities in the US (Lamsal et al., 2015; Lu et al., 2015; Kim et al., 2016), Europe (e.g., Zhou et 68 

al., 2012; Castellanos et al., 2012; Vinken et al., 14a), Asia (Ghude et al., 2013; Goldberg et al., 69 

2019a), and other world urban areas (Krotkov et al., 2016; Duncan et al., 2016; Montgomery and 70 

Halloway, 2018). OMI NO2 observations have frequently bseen used to evaluate chemical 71 

transport models (CTMs) (e.g., Herron-Thrope et al., 2010; Han et al., 2011; Hudman et al., 2012; 72 
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Pope et al., 2015; Rasool et al., 2016), to study atmospheric NOx chemistry and lifetime (e.g., 73 

Lamsal et al., 2010; Beirle et al., 2011; Canty et al., 2015; Tang et al., 2015; Laughner and Cohen, 74 

2019), and to infer ground-level NO2 concentrations (Lamsal et al., 2008; Gu et al., 2017), NO2 75 

dry deposition (Nowlan et al., 2014, Geddes and Martin, 2017), and emissions of co-emitted gases 76 

including carbon dioxide (CO2) (Konovalov et al., 2016; Goldberg et al., 2019b, Liu et al., 2019). 77 

Over the last decade, there have been considerable efforts to improve NO2 data quality from OMI 78 

and other satellite instruments (e.g., Boersma et al., 2018). A special emphasis has been placed on 79 

improving auxiliary information (e.g., a priori NO2 vertical profiles, surface reflectivity), 80 

particularly with respect to spatial and temporal resolution. For instance, the global OMI NO2 81 

products are based on a priori NO2 profiles from relatively coarse-resolution (>1.0°× 1.25°) global 82 

CTM simulations (Boersma et al., 2011; Krotkov et al., 2017, Choi et al., 2020). Many regional 83 

studies suggest a general low-bias in the global tropospheric NO2 column products, particularly 84 

over polluted areas, that can be partially mitigated by using a-priori information from high-85 

resolution CTM simulations (Russell et al., 2011, McLinden et al., 2014; Lin et al., 2014; 2015; 86 

Goldberg et al., 2018; Choi et al., 2020). Current global NO2 retrievals are based on a low-87 

resolution (0.5°× 0.5°) static climatology of surface Lambert-Equivalent Reflectivity (OMLER) 88 

product (Kleipool et al., 2008), which is likely biased high due to insufficient cloud and aerosol 89 

screening. This bias in surface reflectivity can lead to an underestimation of tropospheric NO2 90 

retrievals (Zhou et al., 2010; Lin et al., 2014; Vasilkov et al., 2017). In addition, the OMLER data 91 

do not account for the significant day-to-day (orbital) variability in surface reflectance caused by 92 

changes in sun-satellite geometry, a phenomenon often expressed by the bi-directional reflectance 93 

distribution function (BRDF). Zhou et al. (2010) demonstrated the impact of both the spatial 94 

resolution and the BRDF effect on OMI tropospheric NO2 retrievals over Europe by using high-95 

resolution surface BRDF and albedo products from the Moderate Resolution Imaging 96 

Spectroradiometer (MODIS). Taking advantage of the MODIS high resolution data, albeit 97 

neglecting the BRDF and atmospheric effects, Russell et al (2011) and McLinden et al (2014) 98 

created improved NO2 products from the NASA Standard Product (Bucsela et al., 2013; Lamsal 99 

et al., 2014) over the continental US and Canada, respectively. While these and subsequent studies 100 

(e.g., Laughner et al., 2019) addressed the limitation of climatological LER data on NO2 retrievals, 101 

they did not account for the surface BRDF effect on the OMI cloud products (cloud 102 

pressure/fraction), which are also inputs to the NO2 algorithm. Applying the MODIS BRDF data 103 
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consistently to both the NO2 and cloud retrievals demonstrably improves the quality of OMI NO2 104 

retrievals over China (Lin et al., 2014, 2015, Liu et al., 2019). However, this approach is 105 

computationally expensive and is applicable to land surfaces only. Our previous work (Vasilkov 106 

et al., 2018) proposed an approach appropriate for satellite NO2 data processing on a global scale 107 

(a) by using MODIS BRDF information consistently in the cloud and NO2 retrievals; (b) for both 108 

land and water; and (c) in an efficient way. Here, we apply the approach globally for the first time 109 

in the standard NASA OMI NO2 algorithm. 110 

In this paper we describe various updates made in the version 4.0 (V4.0) NASA OMI NO2 111 

algorithm, discuss their impact on the retrievals of tropospheric and stratospheric NO2 column 112 

amounts, and provide an initial quantitative assessment of NO2 data quality. Section 2 describes 113 

the OMI NO2 algorithm and various auxiliary data used by the algorithm. We present validation 114 

results in Section 3. Section 4 summarizes the conclusions of this study. 115 

2 OMI and the NO2 Standard Product 116 

OMI is a ultraviolet-visible (UV-Vis) spectrometer on the polar-orbiting NASA Aura satellite 117 

(Levelt et al., 2006, 2018). Aura, launched on July 15, 2004, follows a sun-synchronous orbit with 118 

an equator crossing time near 13:45 local time. OMI employs two-dimensional CCD detectors and 119 

operates in a push-broom mode, registering spectral data over a 2600 km cross-track spatial swath. 120 

The broad swath enables global daily coverage within 14-15 orbits. In the OMI visible channel 121 

used for NO2 retrievals, each swath, measured every two seconds, comprises 60 cross-track fields 122 

of view (FOVs) varying in size from ~13 km × 24 km near nadir to ~24 km × 160 km for the FOVs 123 

at the outermost edges of the swath. Each orbit consists of ~1650 swaths from terminator to 124 

terminator.    125 

The OMI NO2 Standard Product (OMNO2) algorithm provides retrievals of NO2 column (total, 126 

tropospheric, and stratospheric) amounts by exploiting Level-1B calibrated radiance and irradiance 127 

data from the Vis channel (350-500 nm with 0.63 nm spectral resolution). The algorithm employs 128 

a multi-step procedure that consists of 1) a spectral fitting algorithm to calculate NO2 slant column 129 

densities (SCDs) as discussed in Section 2.1; 2) determination of air mass factors (AMFs) to 130 

convert SCDs to vertical column densities (VCDs) as discussed in detail in Section 2.2; 3) a 131 

scheme to remove cross-track dependent artifacts or stripes; and 4) a stratosphere-troposphere 132 

separation scheme to derive tropospheric and stratospheric NO2 VCDs. The AMF depends upon a 133 
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number of parameters including optical geometry (solar and viewing azimuth and zenith angles), 134 

surface reflectivity, cloud pressure and fraction, and the shape of the NO2 a priori vertical profile. 135 

Since the first release of OMNO2 in 2006 (Bucsela et al., 2006; Celarier et al., 2008), there have 136 

been significant conceptual and technical improvements in the retrieval of NO2 from space-based 137 

measurements. Prior versions developed a new scheme for separating stratospheric and 138 

tropospheric components in version 2.1 (V2.1) (Bucsela et al., 2013, Lamsal et al., 2014) and a 139 

new algorithm for improved NO2 SCD retrievals in V3.0 (Marchenko et al., 2015, Krotkov et al., 140 

2017), and included improved cloud products (Veefkind et al., 2016) in V3.1 (Choi et al., 2020). 141 

The current version, V4.0, further improves on the retrievals in a number of significant ways for 142 

NO2 AMF and VCD calculations. Figure 1 shows a schematic diagram of the retrieval algorithm, 143 

and Table 1 summarizes the differences and similarities between previous (V3.1) and current (V4) 144 

versions. Some of the approaches in the V4 algorithm are similar to those used in V3.1, but there 145 

are several important changes as discussed in detail in Sections 2.1 and 2.2. 146 

2.1 NO2 and O2-O2 spectral fitting 147 

2.1.1 NO2 spectral fitting algorithm 148 

The spectral fitting algorithm for the operational standard OMI NO2 product is described in detail 149 

in Marchenko et al. (2015). Briefly, the algorithm retrieves NO2 slant column densities (SCDs) by 150 

using a Differential Optical Absorption Spectroscopy (DOAS) approach (e.g., Platt and Stutz, 151 

2006). In the DOAS approach, laboratory-measured spectra of NO2 (Vandaele et al., 1998) and 152 

glyoxal (Volkamer et al., 2005), HITRAN08-based water vapor spectra (Rothman et al., 2009), 153 

and rotational Raman (RR; Ring effect) filling-in are sequentially fitted to the OMI-measured 154 

reflectance spectrum in the 402-465 nm wavelength range. The slant column represents the 155 

integrated abundance of NO2 along the average photon path from the Sun, through the atmosphere, 156 

to the satellite. The Ring spectra are calculated as a linear combination of the atmospheric (Joiner 157 

et al. 1995) and the liquid-water (Vasilkov et al., 2002) RR spectra, convolved with the wavelength 158 

and cross-track dependent OMI transfer function (Dirksen et al., 2006). The algorithm employs a 159 

multi-step, iterative retrieval procedure for removal of the Ring and spectral under-sampling 160 

(Chance, et al., 2005) patterns as well as a low-order polynomial smoothing prior to estimation of 161 

SCDs for all interfering species. This is in contrast with the conventional DOAS approach that 162 

treats the Ring effect as a pseudo-absorber and fits all absorbers simultaneously with the 163 
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polynomial functions. For accurate wavelength shifts (radiances vs. irradiances), the standard 164 

product algorithm splits the entire fitting window into seven carefully selected, partially 165 

overlapping micro-windows, iteratively evaluates the RR spectrum amplitudes, performs 166 

wavelength adjustments for each segment, and then iteratively retrieves the NO2, H2O, and glyoxal 167 

in the windows best suited for a particular trace-gas species.  168 

The OMI NO2 SCDs from the standard product were compared with improved SCD retrievals 169 

from the Quality Assurance for Essential Climate Variables (QA4ECV, http://www.qa4ecv.eu/), 170 

BIRA-IASB’s (Royal Belgian Institute for Space Aeronomy) QDOAS software (http://uv-171 

vis.aeronomie.be/software/QDOAS/), and the latest KNMI retrievals (van Geffen et al., 2015) and 172 

are shown to agree within 2% (Zara et al., 2018). The typical NO2 SCD uncertainties amount to 173 

~0.8×1015 molec cm-2, or 5-7% in high-SCD areas and 15-20% in low-SCD values (Marchenko et 174 

al., 2015).  175 

2.1.2 O2-O2 spectral fitting algorithm 176 

The oxygen dimer (O2-O2) slant column fitting algorithm shares many features of the NO2 fitting 177 

algorithm and is described in detail in Vasilkov et al. (2018). It consists of a multi-step, iterative 178 

retrieval approach with three carefully selected micro-windows sampling the flanks and the core 179 

of the broad O2-O2 feature centered at 477 nm. The algorithm exploits OMI-measured reflectance 180 

spectra in the 451-496 nm range to determine the wavelength shifts and RR amplitudes. The Ring 181 

patterns are removed from the original OMI reflectances during the iterative adjustments for 182 

differences in the wavelength registration of radiances and irradiances. The O2-O2 slant columns 183 

are retrieved after removal of the NO2 and H2O absorptions estimated by the algorithm discussed 184 

in the previous section, and of the ozone absorption using total ozone data from Veefkind et al. 185 

(2006). After removal of the interfering signals, the 477 nm O2-O2 absorption profile is carefully 186 

normalized to the adjacent O2-O2 absorption-free reflectance levels accounting for very different 187 

wavelength dependencies of surface reflectances over various geographical sites (e.g., the open-188 

ocean and desert area), as described in Vasilkov et al. (2018). The normalized O2-O2 absorption 189 

profiles are then iteratively fitted with the temperature-dependent cross-sections from Thalman 190 

and Volkamer (2013) over the 463-488 nm range to derive O2-O2 SCDs. These are used to estimate 191 

the cloud properties as discussed below in Section 2.2.2.  192 
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2.2 Improved air mass factor calculations 193 

The AMF, which is defined as the ratio of SCD to VCD, is needed to calculate the retrieved NO2 194 

VCD. Details of the AMF and its calculation are given in Palmer et al. (2001). The AMF for each 195 

FOV is calculated by combining altitude (z)-dependent scattering weights (w) computed with a 196 

radiative transfer model and a local a priori vertical NO2 profile shape (S), taken from a chemistry-197 

transport model:  198 

𝐴𝑀𝐹 = ∫ 𝑤(𝑧)𝑆(𝑧)𝑑𝑧!!
!"

.       (1) 199 

For the tropospheric AMF, the integral extends from the surface to the tropopause, whereas the 200 

integral from the tropopause to the top of the atmosphere provides the stratospheric AMF. The 201 

scattering weight at a given altitude describes the sensitivity of the backscattered radiation to the 202 

abundance of the absorber at that altitude. For an optically thin absorber like NO2, scattering 203 

weights are a function of atmospheric scattering and are considered to be independent of the 204 

species’ vertical distribution (Palmer et al., 2001). Factors affecting scattering weights include 205 

wavelength, optical geometry (solar and viewing azimuth and zenith angles), surface reflectivity, 206 

and cloud pressure and fraction. The wavelength dependence of scattering weights is accounted 207 

for by creating an average of scattering weights derived from the values at multiple wavelengths 208 

within the NO2 spectral fitting window. To compensate for the effect of the assumed constant NO2 209 

temperature (220 K) in the NO2 SCD retrievals, the scattering weights are corrected for the 210 

atmospheric temperature effect using local climatological monthly temperature profiles as 211 

discussed in Bucsela et al. (2013). These profiles are based on the meteorological field from the 212 

Modern‐Era Retrospective Analysis for Research and Applications (MERRA-2) (Gelaro et al., 213 

2017). 214 

The a priori NO2 profile shapes are computed from a monthly mean climatology of vertical NO2 215 

profiles constructed from the Global Modeling Initiative (GMI) CTM simulation (Douglass et al. 216 

2004, Strahan et al., 2007, Strode et al., 2015) driven by MERRA-2 meteorology. The spatial 217 

resolution of the model is 1.25° in longitude and 1.0° in latitude, and the atmosphere is divided 218 

into 72 pressure levels extending from the surface to 0.01 hPa. The model output is sampled 219 

between 13:00 - 14:00, local time, consistent with the OMI overpass time. The use of monthly 220 

NO2 profiles helps capture the seasonal variation in the NO2 vertical distribution (Lamsal et al., 221 

2010). The simulation is based on yearly varying NOx emissions, as discussed in Strode et al., 222 

(2015); this is necessary to account for the effect of rapidly changing NOx emissions (e.g., Tong 223 
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et al., 2015; Duncan et al., 2016; Miyazaki et al., 2017) on local NO2 profile shapes (Lamsal et al., 224 

2015; Krotkov et al., 2017).  225 

For each FOV, AMFs are computed for clear (𝐴𝑀𝐹"#$) and cloudy (𝐴𝑀𝐹"#%) conditions. The AMF 226 

of a partially cloudy scene is calculated by assuming the independent pixel approximation:   227 

𝐴𝑀𝐹 = (1 − 𝑓$) × 𝐴𝑀𝐹"#$ + 𝑓$ × 𝐴𝑀𝐹"#%,     (2) 228 

where 𝑓$ is the cloud radiance fraction (CRF), defined as the fraction of the measured radiation 229 

that comes from clouds and scattering aerosols, and is computed at 440 nm from the retrieved 230 

effective cloud fraction (ECF), 𝑓" using Equation 8 (see below). 𝐴𝑀𝐹"#$ is calculated for the 231 

ground reflectivity of 𝑅& and at terrain pressure 𝑃&, whereas 𝐴𝑀𝐹"#% is calculated assuming a 232 

Lambertian surface of reflectivity 0.8 at the retrieved cloud pressure. Below we provide a detailed 233 

discussion of each of these input parameters that are incorporated in the OMNO2 V4.0 algorithm. 234 

2.2.1 New surface reflectivity product for NO2 and cloud retrievals 235 

Surface reflectivity is an important input parameter for UV/Vis satellite retrievals of trace gases 236 

and cloud information. The surface reflectance over both ocean and land depend upon viewing and 237 

illumination geometry and can be accurately described by the bidirectional reflectance distribution 238 

function (BRDF). This effect is, however, neglected by most currently available trace gas and 239 

cloud algorithms which use a climatological Lambert-equivalent reflectivity (LER) for the surface. 240 

To account for surface BRDF effects in the NO2 and cloud retrievals, here we use the geometry-241 

dependent surface LER (GLER) product derived using the Moderate Resolution Imaging 242 

Spectroradiometer (MODIS) BRDF data and the Vector Linearized Discrete Ordinate Radiative 243 

Transfer (VLIDORT) calculation (Vasilkov et al., 2017; Qin et al., 2019; Fasnacht et al., 2019). 244 

The GLER allows for a computationally efficient approach that does not require major changes to 245 

the existing trace gas and cloud algorithms. 246 

We derive GLER by inverting the top-of-atmosphere (TOA) radiance (I) of a Rayleigh atmosphere 247 

over a non-Lambertian surface for each specific FOV and Sun-satellite geometry within the 248 

Lambertian framework, i.e.,  249 

𝐼 = 𝐼' + 𝐺𝐿𝐸𝑅 × 𝑇/(1 − 𝐺𝐿𝐸𝑅 × 𝑆(),     (3) 250 

where 𝐼' is the TOA radiance calculated for a black surface, T is the total (direct + diffuse) solar 251 

irradiance reaching the surface converted to the ideal Lambertian-reflected radiance (by dividing 252 

by π steradians) and then multiplied by the transmittance of the reflected radiation between the 253 
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surface and TOA in the direction of a satellite instrument, and 𝑆( is the diffuse flux reflectivity of 254 

the atmosphere for the case of its isotropic illumination from below (Dave, 1978). The value of I0, 255 

T, and Sb are pre-computed with VLIDORT and stored in a look-up table. The GLER values are 256 

calculated at wavelengths relevant for both NO2 (440 nm) and cloud (466 nm) retrievals.  257 

Over land, the BRDF is calculated using the Ross-Thick Li-Sparse kernel model (Lucht et al., 258 

2000) in VLIDORT (Spurr, 2006):  259 

𝐵𝑅𝐷𝐹 = 𝑎)&* + 𝑎+*#𝑘+*# + 𝑎,-*𝑘+*#,     (4) 260 

where the coefficients, 𝑎)&*, 𝑎+*#, and 𝑎,-* come from the Moderate Resolution Imaging 261 

Spectroradiometer (MODIS) Collection 5 gap-filled, seasonal snow-free BRDF product 262 

MCD43GF (Schaaf et al., 2002, 2011) for band 3 (459-479 nm) available at 30 arc-second spatial 263 

resolution and 8-day temporal resolution. The term 𝑎)&* is the isotropic contribution describing the 264 

Lambertian part of light reflection from the surface, the volumetric kernel (𝑘+*#) describes light 265 

reflection from a dense leaf canopy, and the geometric kernel (𝑘,-*) describes light reflection from 266 

a sparse ensemble of surface objects casting shadows on the background assumed to be 267 

Lambertian. The kernels are the only angle-dependent functions, the expressions of which are 268 

given in Lucht et al. (2000). The band 3 BRDF coefficients spatially averaged over an actual 269 

satellite FOV are used to calculate TOA radiance and GLER at 466 nm. To calculate GLER at 440 270 

nm, we apply a scaling method using the ratio of OMI-derived lambert equivalent reflectivity 271 

(LER) data at 440 nm and 466 nm: 272 

𝐺𝐿𝐸𝑅..' = 𝐺𝐿𝐸𝑅.// × 𝑓&.        (5) 273 

The value of 𝑓& =
012##$
012#%%

 is taken from the gridded monthly LER ratio data at 1°×1° or coarser 274 

resolution. The LER is determined from OMI TOA radiance measurements as discussed in 275 

Vasilkov et al. (2017, 2018). We use clear-sky (effective cloud fraction <0.02) and aerosol free 276 

(OMI UV Aerosol Index (Torres et al., 2007) <0.5) OMI LER data to create the monthly gridded 277 

data. The cloud and aerosol screening is necessary because the spectral dependence of surface 278 

features differ from that of clouds and aerosols.   279 

Over water, the surface reflectance is calculated at the two wavelengths, 440 nm and 466 nm, using 280 

VLIDORT. To calculate TOA radiance, we include light specularly reflected from a rough water 281 

surface as well as diffuse light backscattered by water bulk. We also account for contributions 282 

from oceanic foam that can be significant for high wind speeds. Reflection from the water surface 283 
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is described by the Cox–Munk slope distribution function, which depends on both the wind speed 284 

and the wind direction (Cox and Munk, 1954). Polarization at the ocean surface is accounted for 285 

by using a full Fresnel reflection matrix as suggested by Mishchenko and Travis (1997).  286 

We use wind speed data from a pair of satellite microwave imagers that include the Advanced 287 

Microwave Scanning Radiometer - Earth Observing System (AMSR-E) instrument onboard the 288 

NASA Aqua satellite (Wentz and Meissner, 2004) for 2004-2011 and the Special Microwave 289 

Imager/Sounder (SSMIS) onboard the Air Force Defense Meteorological Satellite Program 290 

(DMSP) Satellite F16 (Wentz et al., 2012) afterwards. Wind direction data are taken from the 291 

Global Modeling Assimilation Office (GMAO) Goddard Earth Observing System Model Forward 292 

Processing for Instrument Teams (GEOS-5 FP-IT) near real time assimilation.  293 

Diffuse light from the ocean is described by a Case 1 water model with a single input parameter 294 

of chlorophyll concentration (Morel, 1988) taken from the monthly Aqua/MODIS data. The 295 

common Case 1 water model developed for the Vis (Morel, 1988) was extended to the UV using 296 

data from Vasilkov et al. (2002, 2005). To calculate water-leaving radiance, we require the 297 

downwelling irradiance at the surface (i.e., atmospheric transmittance). Since the transmittance 298 

and the water-leaving contribution are coupled, we develop a simple coupling scheme in 299 

VLIDORT that ensures the value of water-leaving radiance used as an input at the ocean surface 300 

will correspond to the correct value of the downwelling flux reaching the surface interface 301 

(Fasnacht et al., 2019).  302 

For OMI ground pixels covering land and water surfaces, the TOA radiance (I) is calculated as an 303 

average of radiance for land (𝐼0) and water (𝐼3) weighted by the pixel land fraction (𝑓): 304 

𝐼 = 𝑓𝐼0 + (1 − 𝑓)𝐼3.        (6) 305 

The value of  𝑓 is determined by converting various surface categories in the MODIS data (note 306 

that these are of much higher spatial resolution than the OMI data) into a binary land-water mask 307 

(e.g., treating all shorelines and ephemeral water as the land category and classifying all other 308 

water sub-categories simply as water). The areal fraction of land (or water) for each OMI pixel is 309 

then computed as the statistics of the binary categories. 310 

Figure 2 shows an example of changes in surface reflectivity used in the previous (V3.1) and the 311 

current (V4.0) version of the OMI NO2 algorithm. The GLER data computed for OMI observations 312 

as discussed above for March 20, 2005 differ considerably from the OMI-derived climatological 313 
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monthly LER data (Kleipool et al., 2008) for March. As shown in Figures 2 and 3(a), the GLERs 314 

are generally lower than climatological LERs data except at swath edges with large viewing angles 315 

and over areas affected by sunglint that correspond to higher values of GLER. Changes over the 316 

sunglint areas are rather large, reaching up to 0.3. The climatological LER data derived by 317 

analyzing histograms of five years of OMI-based LER data likely overestimate the actual surface 318 

reflectivity due to residual cloud and aerosol contamination and underestimate over sunglint areas 319 

as the procedure ignores sun glint affected observations. In contrast, the GLER data over land are 320 

based on atmospherically corrected radiances from high-resolution MODIS observations, 321 

minimizing the impact of both cloud and aerosols.   322 

2.2.2 Improved cloud products retrieval 323 

We develop a new algorithm that provides cloud parameters, namely cloud radiance fraction 324 

(CRF) and cloud optical centroid pressure (OCP), and use them in the OMNO2 algorithm. Similar 325 

to the standard OMCLDO2 algorithm (Veefkind et al, 2016), our cloud algorithm exploits the O2-326 

O2 absorption to retrieve O2-O2 SCD as discussed in Section 2.1.2, but derives the two cloud 327 

parameters using the GLER and other ancillary data that are used in the NO2 algorithm, 328 

maintaining inter-algorithm consistency. The OMCLDO2 algorithm retrieves these parameters 329 

using the climatological LER data from Kleipool et al. (2008). In the following, our new cloud 330 

product is referred to as OMCDO2N.   331 

The derivation of CRF and OCP is based on a simple cloud model called the mixed Lambertian-332 

equivalent reflectivity (MLER) model (Joiner and Vasilkov, 2006; Veefkind et al., 2016). The 333 

MLER model treats cloud and ground as horizontally homogeneous, opaque Lambertian surfaces 334 

and mixes them using the independent pixel approximation (IPA). According to the IPA, the 335 

measured TOA radiance,	𝐼4, is a sum of the clear-sky (𝐼,) and overcast (𝐼") subpixel TOA 336 

radiances that are weighted with an effective cloud fraction (ECF), 𝑓" (e.g., Stammes et al., 2008): 337 

𝐼4 = 𝐼,(1 − 𝑓") + 𝐼"𝑓" .       (7) 338 

We choose the wavelength of 466 nm that is not substantially affected by rotational Raman 339 

scattering (RRS) or atmospheric absorption to derive 𝑓". The parameters 𝐼, and 𝐼" are a function 340 

of the ground and cloud LERs, respectively, and are calculated using VLIDORT (Spurr, 2006) and 341 

obtained with an interpolated look up table. We use GLER discussed above for ground reflectivity 342 
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and a uniform cloud reflectivity of 0.8 (Koelemeijer et al., 2001; Stammes et al., 2008). The value 343 

of 𝑓" is calculated by inverting Equation (7). Note that aerosols are implicitly accounted for in the 344 

determination of 𝑓", as they are treated (like clouds) as particulate scatters. CRF (𝑓$) defines the 345 

fraction of TOA radiance reflected by cloud:  346 

 𝑓$ = 𝑓" ×
5&
5'

.          (8) 347 

We use pre-computed look-up tables of the TOA radiances generated using VLIDORT. Due to its 348 

wavelength dependence, we calculate CRF at 466 nm for OCP at 440 nm for NO2 retrievals.  349 

The MLER model compensates for photon transport within a cloud by placing the Lambertian 350 

surface somewhere in the middle of the cloud instead of at the top (Vasilkov et al., 2008). The 351 

pressure of this surface corresponds to OCP, which can be modeled as a reflectance-averaged 352 

pressure level reached by backscattered photons (Joiner et al., 2012). We retrieve cloud OCP from 353 

the O2-O2 SCD discussed above (Section 2.1.2). The cloud OCP,	𝑃", is estimated by inversion 354 

using the MLER method to compute the appropriate O2-O2 AMFs:  355 

𝑆𝐶𝐷 = 𝐴𝑀𝐹, × 𝑉𝐶𝐷, × (1 − 𝑓$) + 𝐴𝑀𝐹" × 𝑉𝐶𝐷" × 𝑓$,    (9) 356 

where VCD (= SCD/AMF) is the vertical column density of O2-O2 over ground (𝑉𝐶𝐷,) and cloud 357 

(𝑉𝐶𝐷6). The clear-sky (𝐴𝑀𝐹,) and overcast or cloudy (𝐴𝑀𝐹") subpixel AMFs are calculated at 358 

477 nm with ground (GLER) and cloud (0.8) reflectivity, respectively. Look-up tables for the 359 

AMFs were generated using VLIDORT. Temperature profiles needed for estimation of VCD and 360 

AMF are taken from the GEOS-5 global data assimilation system (Rienecker et al., 2011).  361 

In addition to OCP, we retrieve the so-called scene pressure. The scene pressure is derived from 362 

Eq. (9) assuming that 𝑓$ = 1	and cloud reflectivity = scene LER. The scene LER is determined 363 

from the measured TOA radiance using the equation (Eq. 3) that defines TOA radiance in the 364 

Rayleigh atmosphere over a Lambertian surface. In the absence of clouds, aerosols, and any major 365 

gas absorptions, the scene pressure should be equal to the surface pressure. The scene pressure is 366 

therefore an important diagnostic tool for evaluation of the performance of cloud pressure 367 

algorithms.  368 
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Figure 4 shows an example of cloud products retrieved with our algorithm compared with those 369 

retrieved from the standard OMCLDO2 algorithm (Veefkind et al., 2016). The retrieved OCP and 370 

CRF from the two algorithms exhibit broadly consistent spatial patterns in both cloud altitude and 371 

amount. The values of OCP generally range from 370 hPa to 1001 hPa in OMCDO2N versus 150 372 

hPa to 1011 hPa in OMCLDO2N. For both products, CRF varies from 0 for clear-sky to 1 for 373 

overcast conditions. A systematic difference is evident with generally higher values in OMCDO2N 374 

for OCP by 147 hPa and CRF by 0.01 as compared to OMCLDO2. For OCP, there is a general 375 

pattern in difference with OMCDO2N OCP higher for low-altitude clouds (>700 hPa) and lower 376 

values for high-altitude clouds (<300 hPa) (Figure 3(c)). The largest OCP differences occur for 377 

cases where cloud pressures in OMCLDO2 are clipped to 150 hPa. For CRF, larger differences 378 

occur for partially cloudy scenes with higher CRF values in OMCDO2N by 0-0.1 for both land 379 

and water surfaces (Figure 3(b)). Exceptions are over sun-glint areas, where CRF in OMCDO2N 380 

is lower by 0-0.3 with the mean difference of 0.13.   381 

2.2.3 Treatment over snow and ice surfaces 382 

Over ice and snow surfaces, identified by the Near-real-time Ice and Snow Extent (NISE) flags 383 

(Nolin et al., 2005) in the OMI Level 1b data, the following treatments are made for surface 384 

reflectivity. In case of permanent ice and snow surfaces, the MCD43GF product provides BRDF 385 

parameters, allowing us to calculate GLER. Over seasonal snow area usually with data gaps in 386 

MCD43GF, we calculate OMI-derived LER but capped by a constant snow albedo of 0.6 following 387 

Boersma et al. (2011). In rare cases of pixels not flagged by NISE and gaps in MODIS data, we 388 

use OMI LER climatology (Kleipool et al., 2008), regardless whether the surface is either snow/ice 389 

covered but missed by NISE or snow/ice free.   390 

The OMI-derived scene reflectivity and scene pressure are used for NO2 and cloud retrievals over 391 

seasonal snow covered areas. If the NISE flags are set as true, the following assumptions are made 392 

in our CRF, OCP, and NO2 retrievals. Over bright surfaces (scene reflectivity > 0.2), we consider 393 

the scenes as snow or cloud covered and assign the scene pressure to OCP. In addition, if a 394 

difference between the surface pressure and scene pressure is smaller than 100 hPa, the scene is 395 

considered to be either cloud free or covered by optically thin clouds following the cloud over 396 

snow classification by Vasilkov et al. (2010), and CRF for the pixel is set to zero. If the difference 397 

between the surface pressure and scene pressure exceeds 100 hPa, the scene is considered to be 398 

overcast by optically thick (shielding) clouds (Vasilkov et al., 2010), and CRF for the pixel is set 399 
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to one. To avoid a possible NISE misclassification (Cooper et al., 2018) for low-reflectivity scenes 400 

(scene reflectivity < 0.2), we consider such scenes as being snow/ice-free and calculate CRF, OCP, 401 

and NO2 AMF using the standard procedure with GLER for those scenes. 402 

2.2.4 Improved terrain height/pressure calculation 403 

Terrain pressure is a critical parameter to the AMF in NO2 and cloud algorithms as well as to the 404 

total optical depth of the Rayleigh atmosphere in the GLER algorithm. Prior studies have shown 405 

that errors in terrain pressure can introduce over 20% errors in retrieved NO2 VCD, especially in 406 

areas of complex terrain (Zhou et al, 2010; Russell et al., 2011). 407 

Here, we use a 2-arc minute Global Relief Model of global land-water surface data (ETOPOv2, 408 

National Geophysical Data Center, 2006) to derive terrain height for each individual OMI ground 409 

pixel. We derive the pixel-average terrain height by collocating and averaging the high resolution 410 

data as discussed in Qin et al. (2019). The corresponding terrain pressure for each OMI pixel (𝑃&) 411 

is calculated from the terrain pressure-height relationship established based on MERRA-2 monthly 412 

terrain pressure (𝑃&_895) at a spatial resolution of 1° latitude × 1.25° longitude used in the GMI 413 

model discussed above:  414 

𝑃& = 𝑃&_895𝑒
:(()* ),         (10) 415 

where ∆𝑧 (= 𝑧 −	𝑧895) represents the difference between the average terrain height for an OMI 416 

pixel (𝑧) and the terrain height at GMI resolution (𝑧895). The parameter, 𝐻 = =>
9,

, represents the 417 

scale height, where k is the Boltzmann constant, T is the temperature at the surface, M is the mean 418 

molecular weight of air, and g is the acceleration due to gravity.  419 

2.3 Impact of the changes on AMF  420 

Figure 5 shows an example of how changes in each individual input parameter affect tropospheric 421 

AMFs which, in turn, translate inversely to tropospheric NO2 column retrievals. Replacing 422 

climatological LER from OMLER with daily GLER data affects scattering weight profiles in the 423 

lower troposphere, resulting in lower values of tropospheric AMF almost everywhere, except over 424 

sun glint areas, where the use of GLER enhances scattering weights and tropospheric AMF (Figure 425 

5(a)). The changes in tropospheric AMF with GLER usually range from -50% to 25%, 426 

occasionally reaching up to -100%. The effect is small (-6% to 1%) for overcast scenes (CRF>0.9), 427 
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and increases (-28% to 17%) over clear and partially cloudy scenes (CRF<0.5), for unpolluted 428 

regions, and surges (-62% to 3%) over polluted areas (>5´1015 molec. cm-2).  Figure 6(a) shows 429 

GLER-driven changes in clear-sky (CRF<0.5) tropospheric AMF for different surface and scene 430 

types, separated by tropospheric NO2 column amounts. For 80% of cases over land, 97% over 431 

water outside of sunglint areas, and 98% over sunglint areas, tropospheric NO2 columns are < 432 

1.5´1015 molec. cm-2 and the average GLER-driven differences are small at –6.6±17.3%, -433 

3.8±7.1%, and 4.0±12.9%, respectively. The differences increase gradually with column amount 434 

over NOx source regions (e.g., cities and coastal areas) with binned (of size 1´1015 molec. cm-2) 435 

average differences ranging from -10±20.1% to -30±19.7%. Over snow and ice surfaces, changes 436 

are rather large, reaching up to a factor of two. The impact of change in the surface reflection data 437 

on stratospheric AMFs is negligible (<2%). 438 

Figures 5(b) and 6(b) show how changes in the cloud parameters (CRF and OCP) affect 439 

tropospheric AMF. Replacing OMCLDO2-based cloud parameters with those from OMCDO2N 440 

changes scattering weight profiles in a complicated way. Higher values of OCP in OMCDO2N 441 

will include a larger portion of scattering weights in the lower troposphere, thereby reducing the 442 

tropospheric AMF. On the other hand, the higher CRF values lead to an increased contribution of 443 

the cloudy AMF in the calculation of tropospheric AMF. Their combination causes a wide range 444 

of scenarios as well as large variation in the AMF effect. Overall, the change in cloud parameters 445 

causes enhancement of tropospheric AMFs for partially cloudy and overcast scenes and reduction 446 

for clear-sky scenes, especially over polluted areas. The AMF differences are generally large for 447 

low AMF values that are driven by enhanced differences in either OCP, CRF, or both as discussed 448 

in Vasilkov et al (2017). The changes in tropospheric AMF with the OMCDO2N-based cloud 449 

parameters usually range from -17% to 28% with a larger variation over land (-34% to 40%) as 450 

compared to water (-12% to 25%), and for low (<1) AMF (-47% to 41%) as compared to high (>3) 451 

AMF (-4% to 18%). The largest changes in AMF (-96% to 62%) occur over snow and ice surfaces 452 

that result from the difference in the treatment of snow and ice for cloud and NO2 retrievals as 453 

discussed in Section 2.2.3. For clear-sky and partially cloudy scenes with CRF < 0.5, the effect of 454 

the changes in cloud parameters differs between land and water surfaces as well as sunglint and 455 

non-sunglint geometries and becomes more pronounced over polluted land and coastal areas 456 

(Figure 6b). As in the case of surface reflectivity, the impact of the change in cloud parameters on 457 

stratospheric AMF is <1%. 458 
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Figure 5c presents an example of changes in tropospheric AMF differences between the previous 459 

approach of using terrain pressure at OMI pixel centers and the pixel average terrain pressure 460 

implemented in the current version (V4.0). In general, the AMF changes driven by the changes in 461 

terrain pressure are within ±3%, although at times they can reach up to 30%, especially for 462 

observations over complex terrain such as mountainous regions (Figure 5c inset).    463 

Figures 5d and 6c show the AMF differences arising from the combined effect of changes in all 464 

parameters discussed above. The effect arising from the replacement of the climatological OMLER 465 

with GLER is partially compensated by the effect arising from the change in cloud parameters in 466 

places where the two parameters exhibit opposite trend. Exceptions are over polluted land and 467 

coastal areas, the GLER effect on AMF is augmented by the cloud effect. The average AMF 468 

changes arising from all parameters (2%) is lower than the changes arising from either GLER (-469 

2.3%) or cloud parameters (4.1%), although the combined effect leads to a wider range of variation 470 

in AMF changes (-100% to 57%) as compared to the effect from individual parameters. The 471 

changes arising from all parameters are somewhat smaller (-21% to 34%) for overcast scenes 472 

(CRF>0.9) as compared to (-47% to 29%) over clear and partially cloudy scenes (CRF<0.5), and 473 

is substantial (-137% to 30%) over highly polluted areas (>5´1015 molec. cm-2) and over snow/ice 474 

surfaces (-126% to 99%).  Differences in the AMF effect are evident among land, water, and 475 

sunglint areas (Figure 6c). The impact of the changes is below 1% for the stratospheric AMF.  476 

2.4 Row anomaly and removal of stripes 477 

The retrieved NO2 SCDs have persistent relative biases in the 60 cross-track FOVs and show a 478 

pattern of stripes running along each orbital track. This instrumental artifact is corrected using the 479 

“de-striping” procedure described in detail in Bucsela et al (2013). Briefly, the de-striping 480 

algorithm estimates the mean cross-track biases using measurements obtained at latitudes between 481 

30S and 5N and from orbits within 2 orbits of target orbit. These correction values, one for each 482 

cross-track position, are then subtracted from the retrieved SCDs to derive the de-striped SCD 483 

field. 484 

Starting June 25, 2007 and presumably even earlier, OMI experienced a more severe form of 485 

anomaly that affects the quality of radiance data in certain rows at all wavelengths (Dobber et al., 486 

2008; Schenkeveld et al., 2017). This effect, called the “row anomaly” (RA), has developed and 487 
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changed over time. Currently, the RA has affected approximately half of the OMI’s FOVs, 488 

resulting in OMI’s global coverage now in two days instead of one before the onset of the RA. 489 

The quality of radiance data for the RA-affected FOVs is sufficiently poor as to prevent reliable 490 

NO2 retrievals. Therefore, we abandon retrieval calculations for all measurements that are flagged 491 

by the RA-detection algorithm used in the Level-1 processing. We found that this RA-detection 492 

algorithm may not be sufficiently sensitive to the relatively small (but important for our purposes) 493 

RA changes. Figure 7 shows an example of anomalous rows not flagged by the RA-detection 494 

algorithm but observed in the NO2 retrievals. Shown are time series of average NO2 SCDs 495 

normalized by geometric AMFs over the Pacific Ocean for the RA-unaffected row of 20 (0-based) 496 

compared with three rows that show significant degradation in the quality of SCD retrievals. These 497 

particular rows are in the immediate proximity to the main RA area, thus showing the gradual RA 498 

evolution: at the present epoch the RA slowly shifts towards the high-numbered rows – note the 499 

sequential timing of the big drops in the retrievals in the rows 44-46. While the data from the three 500 

rows start deviating from row 20 beginning from summer 2016, the data quality degrades further 501 

for rows 44, 45, and 46 from September of 2017, 2018, and 2019, respectively, to the extent that 502 

they cannot be sufficiently corrected by the de-striping algorithm. In such cases, we implement 503 

additional RA-flagging for those rows that start showing anomalous behavior, and exclude those 504 

data from Level-2 and higher level NO2 products. 505 

2.5 Calculation of stratospheric and tropospheric NO2 columns 506 

We use an observation-based stratosphere-troposphere separation scheme to estimate the 507 

stratospheric NO2 field as discussed in detail in Bucsela et al. (2013), and the algorithm remains 508 

unchanged in the current version. Briefly, the stratospheric field for an orbit is computed by 509 

creating a gridded global field of initial stratospheric NO2 VCD estimates (𝑉)?)@) with data 510 

assembled from within ±7 orbits of the target orbit: 511 

𝑉)?)@ =
A+,-.,

B9C+,-.,
= A:A,-/0_.0

B9C+,-.,
.       (11) 512 

Here 𝑆&@$D@ and 𝐴𝑀𝐹&@$D@ represent stratospheric SCD and AMF, respectively. An a priori 513 

estimates of the tropospheric contribution (𝑆@$*E_DE) are subtracted from the measured, de-striped 514 

SCDs (𝑆), and grid cells where this contribution exceeds 0.3×1015 molecules cm−2 are masked. 515 

This masking ensures that the model contribution to the retrieval is minimal, especially in the 516 

polluted areas. The residual field of the initial stratospheric VCDs measured outside the masked 517 
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regions mainly over unpolluted or cloudy areas is smoothed by a boxcar average and a 2-518 

dimensional interpolation, yielding an estimate for stratospheric NO2 VCD (𝑉&@$D@) for an 519 

individual ground pixel. 520 

The estimation of the stratospheric NO2 VCD allows for the computation of the tropospheric NO2 521 

VCD (𝑉@$*E) from the de-striped NO2 SCD (𝑆) and the tropospheric AMF (𝐴𝑀𝐹@$*E): 522 

𝑉@$*E =
A,-/0

B9C,-/0
= A:A+,-.,

B9C,-/0
,       (12) 523 

where stratospheric NO2 SCD (𝑆&@$D@) is calculated from stratospheric AMF (𝐴𝑀𝐹&@$D@) and 𝑉&@$D@ 524 

computed in the previous step.  525 

With the updates in surface and cloud treatments as discussed in Section 2.2, the current version 526 

has made significant improvements particularly in tropospheric AMFs and consequently in VCD 527 

estimates. Further improvement to the retrievals is possible by enhancing the quality of a priori 528 

NO2 profiles, which remain unchanged in the current version. If improved a priori NO2 profiles 529 

become available, one can first use Eq. 1 to readily re-calculate 𝐴𝑀𝐹@$*E	by combining them with 530 

scattering weights (𝑤(𝑧)) archived in the data files and then use Eq. 12 together with other supplied 531 

parameters to re-calculate 𝑉@$*E. The same approach can be applied to remove the effect of a priori 532 

profiles used in retrievals altogether, while comparing NO2 columns from a model simulation with 533 

retrievals.  534 

Figure 8 shows a comparison of tropospheric and stratospheric NO2 columns retrieved from V3.1 535 

and V4.0 algorithms for 20 March, 2005. As expected, the updates implemented in V4.0 yield 536 

higher (∼10–40%) tropospheric NO2 columns in polluted areas, with less-pronounced (±10%) 537 

differences in background and low-column areas. These results are consistent with the observed 538 

differences in the tropospheric AMF as discussed above in Section 2.2.4 as well as with other 539 

previous regional studies over land surfaces (Zhou et al, 2010; McLinden et al, 2014; Lin et al., 540 

2014, 2015; Laughner et al., 2019; Liu et al., 2019) that implemented one or more of the changes 541 

applied in V4.0. In contrast to changes in tropospheric NO2 retrievals, changes in stratospheric 542 

NO2 estimates range between -3.6´1014 molec. cm-2 and 3.2´1014 molec. cm-2 and are close to the 543 

range of expected uncertainties of stratospheric NO2 estimates (Bucsela et al., 2013). The relative 544 

differences in stratospheric NO2 column between the two versions is close to 0% on average, 545 

usually range between -2.5% and 2.0%, and occasionally reach up to ±13%. This difference in 546 

stratospheric NO2 estimates is much larger than the difference in stratospheric AMFs and is caused 547 
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by differences in tropospheric AMFs that influence NO2 observations over unpolluted and cloudy 548 

areas used by the stratosphere-troposphere separation scheme. 549 

Figure 9 shows the seasonally averaged tropospheric NO2 columns over the selected domains of 550 

North America, Europe, southern Africa, and Asia for the months of June, July, and August in 551 

2005. These domains contain highly polluted areas with significant NOx emissions where the 552 

impact of changes in surface reflectivity and cloud parameters on tropospheric NO2 retrievals 553 

becomes increasingly important. The use of more accurate pixel-specific information for surface 554 

and cloud parameters in V4.0 results in significantly enhanced tropospheric NO2 column retrievals 555 

almost everywhere. The effect, however, varies with the vertical distribution of NO2, with the 556 

largest effects in high-column areas. This spatially-varying effect arising from algorithm changes 557 

could have significant implications for estimates of trends and emissions of NOx from satellite 558 

observations. 559 

Figure 10 shows the seasonal average tropospheric NO2 columns for December through February. 560 

While seasonal differences in NO2 columns are evident owing to changes in NOx lifetime and 561 

boundary layer depth, the impact of algorithm changes in V4.0 remains similar. There are two 562 

notable exceptions specifically related to observations over snow and ice surfaces. First, there are 563 

significant data gaps in V3.1 but nearly none in V4.0. In V3.1, retrievals over snow and ice areas 564 

were considered to be highly uncertain and therefore discarded, following the recommendation of 565 

Boersma et al. (2011). As discussed above in Section 2.2.3, V4.0 incorporates changes in surface 566 

and cloud treatment in NO2 algorithm that allows us to retain more observations that we determine 567 

to be our acceptable level of cloudiness. Next, these algorithm changes led to profound changes in 568 

the calculated tropospheric AMFs and resulting NO2 column amounts. The reduction in retrieved 569 

tropospheric NO2 retrievals in V4.0 over snow and ice covered surfaces arises from a combined 570 

effect of enhanced values of surface reflectivity, their impact on the CRF and OCP retrievals, and 571 

an inconsistent number of samples used in the calculation of the seasonal average. Nevertheless, 572 

due to complexities in separating snow from clouds, caution is needed when interpreting winter 573 

time data at high latitudes.   574 

3 Assessment of OMI NO2 product 575 

In this section, we compare OMI NO2 columns with total column retrievals from ground-based 576 

Pandora measurements and integrated tropospheric columns from aircraft spirals at several 577 

locations of the DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn 578 
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and VERtically Resolved Observations Relevant to Air Quality) field campaign held between 579 

2011 and 2014.  580 

3.1 Comparison between OMI and Pandora total column NO2  581 

Here, we compare the total column NO2 retrievals from OMI and the ground-based Pandora 582 

spectrometer. Pandora is a compact sun-viewing remote sensing instrument that provides estimates 583 

of NO2 column amounts from the surface to the top of the atmosphere (Herman et al., 2009, 2018). 584 

The NO2 retrieval approach for Pandora is similar to that of OMI and consists of the DOAS spectral 585 

fitting procedure to derive NO2 SCD and its conversion to VCD using AMFs. However, the details 586 

differ due to the lack of top-of-atmosphere radiance measurements for the spectral fitting and 587 

simplicity in the AMF calculation for Pandora due to its direct sun measurements.   588 

To compare with the OMI observations, we use Pandora data for sites listed in the Pandonia Global 589 

Network (https://www.pandonia-global-network.org/). Out of 22 sites, we select 18 sites that we 590 

determined to be suitable for comparison. Data from some of the sites (e.g., Rome, Italy) are 591 

consistently higher than OMI by over a factor of two, suggesting that the sites may be in close 592 

proximity to local sources that cannot be resolved by OMI. Although, some of the selected sites 593 

have sporadic and short-term measurements (e.g., Ulsan, S. Korea), we consider them for 594 

improved sampling and coverage. The collocation criteria include spatial and temporal matching 595 

between OMI and Pandora observations by selecting the OMI pixels that encompass the Pandora 596 

site and using Pandora 80-sec total NO2 column data averaged over ±10 minutes of OMI 597 

observations. We use high quality data obtained under clear sky conditions with root-mean-square 598 

of spectral fitting residuals < 0.05 and NO2 retrieval uncertainty < 0.05 DU (~1.3´1015 molec. cm-599 
2) for Pandora and with CRF < 0.5 for OMI. 600 

Figure 11 shows a comparison of OMI total NO2 columns (sum of tropospheric and stratospheric 601 

columns) with coincidently sampled Pandora direct-sun NO2 column retrievals at a clean site of 602 

Izaña in Tenerife Island, Spain, and a more polluted site in Greenbelt (Maryland, USA). The Izaña 603 

Atmospheric Observatory is located on the top of a mountain plateau, with an elevation of 2373 604 

meters above sea level. Since the site is free of local anthropogenic influences, Pandora 605 

observations likely provide stratospheric and free tropospheric NO2 amounts. In contrast, the 606 

Greenbelt site in a suburban Washington DC area has traffic and air quality typical of polluted US 607 

cities. As shown in Figures 11(a) and 11(b), OMI NO2 retrievals from the two versions are highly 608 
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consistent (r>0.92) with somewhat higher values in V4.0 as compared to V3.1, by on average 13% 609 

in Greenbelt and just 1% in Izaña. The variations of OMI NO2 from both versions are also broadly 610 

consistent with the Pandora measurements. The OMI and Pandora NO2 columns are fairly 611 

correlated (r = 0.32, N = 232) at Izaña, and moderately correlated (r = 0.51, N = 123) at Greenbelt; 612 

often times the differences between each individual OMI and Pandora observations are significant. 613 

Overall, the total column NO2 data from OMI is higher than Pandora, with the average difference 614 

of <16%. Occasional large discrepancies between OMI and Pandora reflect a combination of 615 

spatial heterogeneity, differences in spatial and temporal sampling, differences in vertical 616 

sensitivity of satellite and ground-based observations, and errors in OMI and Pandora retrievals. 617 

Figures 11(c) and 11(d) show the multi-year monthly mean variation of OMI and Pandora NO2 618 

columns. The seasonal variation in Pandora and OMI NO2 columns is highly consistent and 619 

exhibits a summer maximum and a fall minimum at Izaña, and a winter maximum and summer 620 

minimum in Greenbelt. The seasonal variation in the total column reflects that of the stratosphere 621 

for Izaña and of the troposphere in Greenbelt. For Izaña, the monthly mean differences between 622 

OMI and Pandora range from 8.2% in June to 38% in October for V4.0 and from 7.0% in June to 623 

37% in October for V3.1. This discrepancy is likely due to the large aerial coverage of OMI pixels 624 

including nearby cities, unlike the point measurements made by Pandora at the mountain top. The 625 

average tropospheric NO2 column observed by OMI is 8.9×1014 molec cm-2, suggesting significant 626 

NO2 amounts in the troposphere with 20-32% contributions to total column NO2 on a monthly 627 

scale. For Greenbelt, the monthly mean differences between OMI and Pandora are within ±12% 628 

for the majority of the cases for both versions, with V4.0 improving agreement for February, April, 629 

May and December, and worsening somewhat in other months, especially in September and 630 

November, when the two versions exhibit larger differences in tropospheric NO2 retrievals.  631 

Figure 12 shows average total NO2 columns measured by Pandora and OMI at the 18 selected 632 

sites. Although there is a wide range of differences between individual sites, Pandora and OMI 633 

observations exhibit a good spatial correlation, with slightly improved correlation for V4.0 634 

(r=0.65, N=1082) as compared to V3.1 (r=0.62). The site-specific average values generally agree 635 

to ±35% for columns < 1016 molec. cm-2. For more polluted sites, OMI retrievals tend to be lower 636 

than the Pandora data. Although the relationship between Pandora and OMI has not changed 637 

appreciably with the updates made in the OMI V4.0 product, the corrections are in the right 638 

direction for a majority of the sites. The observed differences should not be interpreted as biases 639 
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in retrievals but rather as the combined effect of differences in spatial coverage, heterogeneity in 640 

the NO2 field, preferential placement of Pandora instruments, and potentially, a lack of site-641 

specific profile shapes assumed in OMI retrievals.     642 

3.2 Assessment using DISCOVER-AQ observations 643 

We also use NO2 observations from the DISCOVER-AQ field program to assess V4.0 OMI NO2 644 

retrievals. The DISCOVER-AQ campaign was composed of four field deployments:  Baltimore-645 

Washington area in Maryland (MD) in July 2011; the San Joaquin Valley in California (CA) in 646 

January-February 2013; Houston, Texas (TX) in September 2013; and Denver, Colorado (CO) in 647 

July-August 2014. An observing strategy of the campaign was to carry out systematic and 648 

concurrent in situ and remote sensing observations from a network of ground sites and research 649 

aircraft that spiraled over each site 2-4 times a day. The payload of the P-3B research aircraft 650 

included in situ measuring instruments to measure NO2 profiles in the 0.3-5 km altitude range. 651 

Each campaign hosted ground-based networks of surface monitors to provide in situ NO2 652 

observations as well as Pandora spectrometers to measure NO2 column amounts.  653 

We use Pandora NO2 column observations and in situ NO2 spiral data spatially and temporally 654 

matched to OMI on clear and partially cloudy (cloud radiance fraction < 0.5) days. Airborne 655 

measurements were carried out using the 4-channel chemiluminescence instrument from the 656 

National Center for Atmospheric Research (Ridley and Grahek, 1990) and the Thermal 657 

Dissociation Laser-Induced Florescence from the University of Berkeley (Thornton et al., 2000). 658 

Despite differences in the measurement technique and sampling strategy, NO2 measurements from 659 

the two instruments are highly consistent and generally agree within 10%, with the exception of 660 

~32% difference for Houston (Choi et al., 2020). Here, we use the 1-second merged data from the 661 

chemiluminescence instrument only, taking advantage of its high frequency measurements. The 662 

spiral data are extended to the ground by using coincident in situ surface NO2 measurements 663 

sampled over the duration of spiral (~20 minutes). To account for NO2 amounts in the missing 664 

portion from the highest aircraft altitude to the tropopause, we use NO2 from the GMI simulation. 665 

Like the surface data, the Pandora total column NO2 data are averaged over the duration of each 666 

aircraft spiral. For OMI, we include data from all cross-track positions that are not subject to the 667 

row anomaly. 668 

Figure 13 shows a summary of the comparison of OMI V4.0 NO2 columns with vertically 669 

integrated tropospheric columns from the P-3B aircraft at 20 spiral locations. Overall, tropospheric 670 
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NO2 columns from OMI and aircraft spirals suggest a poor agreement but a good correlation 671 

(r=0.74, N=100), although the agreement and correlations vary by campaign locations (r=0.4 for 672 

MD to r=0.81 for CA). OMI retrievals are usually lower than the aircraft data, with larger 673 

differences for sites with larger NO2 gradients and columns (e.g., Denver La Casa, CO; Fresno, 674 

CA). OMI is rarely higher than the aircraft data as this usually happens over relatively cleaner sites 675 

(e.g., Fairhill, MD). This alternating nature of the variation suggests that OMI’s large footprint 676 

size and narrow spiral radius (~4 km) of the aircraft are likely the primary cause for the observed 677 

differences as demonstrated in Choi et al. (2020) by using high-resolution Community Multi-scale 678 

Air Quality Model (CMAQ) simulations. Additional contributions to the observed differences 679 

could come from OMI retrieval errors arising from the use of a coarse resolution GMI-based a 680 

priori NO2 profile shapes in the AMF calculation. Such profile-related retrieval errors can be 681 

partially accounted for by replacing GMI profiles with the aircraft observed NO2 profiles (OMIobs). 682 

The use of observed profiles in the OMI retrievals leads to a slight change in correlation but 683 

significant (20-35%) improvements in agreement with aircraft observations, highlighting the role 684 

of a priori profiles in NO2 retrievals as suggested by previous studies (Russell et al., 2011; Lamsal 685 

et al., 2014; Goldberg et al., 2017; Laughner et al., 2019; Choi et al., 2020). The campaign-average 686 

difference between OMI and aircraft observations is -23.1%. We note here that the aircraft 687 

observed profiles can be very different from the actual profiles over OMI’s FOVs (pixels) due to 688 

a difference in the sampling domains for the two measurements. 689 

Figure 13 also shows the comparison between the OMI and Pandora total column retrievals at the 690 

20 DISCOVER-AQ sites. The correlation between collocated OMI and Pandora observations for 691 

individual campaign locations vary from fair (r=0.13 for MD) to good (r=0.70 for CO), with a 692 

moderate correlation (r=0.56, N=83) for all observations from the four locations. As compared to 693 

the aircraft observations, the OMI data generally show better agreement with the Pandora 694 

retrievals, with the smallest difference in MD and the largest difference in CO. The use of aircraft-695 

observed NO2 profiles in AMF calculations leads to higher OMI column retrievals than those from 696 

Pandora for MD and TX, and lower columns than Pandora for CA and CO. Overall, total column 697 

retrievals from OMI are 16% lower than Pandora. The observed discrepancy between the OMI, 698 

aircraft spiral, and Pandora data points to general difficulties in comparing observations of 699 
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different spatial resolutions for a short-lived trace gas like NO2 that has large spatial gradients, 700 

especially in the boundary layer. 701 

4 Conclusions 702 

We have described a series of significant improvements made to the operational OMI NO2 703 

Standard Product (OMNO2) algorithm. The new version, version 4.0 (V4.0), of the OMNO2 704 

product, released recently to the public at the NASA Goddard Earth Sciences Data and Information 705 

Services Center (GES DISC), mainly relies on improved methods and high-resolution inputs for a 706 

more accurate determination of air mass factors (AMFs). Major improvements include (1) a new 707 

O2-O2 cloud algorithm to estimate cloud radiance fraction (CRF) and cloud optical centroid 708 

pressure (OCP), both required for the AMF calculation; 2) a new MODIS BRDF-derived 709 

geometry-dependent surface Lambertian Equivalent Reflectivity (GLER) input data used in both 710 

the NO2 and cloud retrievals; (3) improved terrain pressure calculated for OMI’s footprint; and (4) 711 

improved surface and cloud treatments over snow and ice surfaces. Over open-water areas, inputs 712 

to the GLER calculations include chlorophyll concentrations from MODIS, the wind speed data 713 

from the Advanced Microwave Scanning Radiometer–Earth Observing System (AMSR-E) and 714 

the Special Microwave Imager–Sounder (SSMIS) instruments, and the wind direction data from 715 

the NASA GEOS-5 model. The following algorithmic steps remain unchanged: the scheme for 716 

separating stratospheric and tropospheric components, first implemented in Version 2.1 (Bucsela 717 

et al., 2013; Lamsal et al., 2014); an optimized spectral fitting algorithm used for NO2 slant column 718 

density retrievals (Marchenko et al., 2015); and the use of annually varying monthly mean Global 719 

Modeling Initiative (GMI) derived inputs (e.g., NO2 vertical profile shapes), as implemented in 720 

Version 3.0 (Krotkov et al., 2017). 721 

The changes in inputs result in substantial changes tropospheric AMFs (and thus VCDs) in V4.0 722 

relative to the previous version (V3.1). The geometry-dependent GLER data computed for OMI 723 

observations used in V4.0 differ considerably from the OMI-derived climatological LER data 724 

(Kleipool et al., 2008) used in V3.1. The data from GLER (a unitless value with 0.0-1.0 range) are 725 

generally lower, by <0.05, than the climatological LER data over land and ocean outside of 726 

sunglint areas, but GLER is much higher over the sunglint areas, reaching more than 0.3, due to 727 

proper modeling of the geometry-dependent Fresnel reflection. The cloud parameters (OCP and 728 

CRF) retrieved from by new O2-O2 cloud algorithm described here and those from the operational 729 
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cloud algorithm (Veefkind et al., 2016) used in V3.1 exhibit significant differences with generally 730 

larger values for both parameters in V4.0 as compared to V3.1, with noticeable exceptions over 731 

sunglint areas, where CRFs in V4.0 are lower by <0.3. Over snow and ice surfaces, identified by 732 

the Near-real-time Ice and Snow Extent (NISE) flags in the OMI L1b data, various adjustments 733 

are made in V4.0 for GLER, OCP, and CRF by using other diagnostic parameters (e.g., scene 734 

pressure) retrieved by the new cloud algorithm. The scattering weights and tropospheric AMFs for 735 

NO2 respond to the changes in these input parameters in a complicated way. Typically, 736 

tropospheric AMFs decrease with the use of GLER and increase with the use of the new cloud 737 

parameters, with exceptions over water surfaces affected by sunglint, where we observe the 738 

opposite effect. Over highly polluted areas, the effect from GLER is augmented by the effect from 739 

the new cloud parameters, resulting in a considerable decrease in the tropospheric AMF. Changes 740 

in tropospheric AMFs resulting from the updates in treatment of the snow and ice-covered areas 741 

are also significant. Changes in the adopted terrain pressure (V4.0 vs V3.1) may also have a sizable 742 

effect on tropospheric AMFs, particularly over areas with a complex terrain. In contrast, for 743 

stratospheric AMFs the combined impact of all of these algorithmic updates is negligible.  744 

The changes in tropospheric AMFs translate directly into changes in tropospheric NO2 retrievals 745 

and indirectly into stratospheric NO2 estimates. Over background and low column NO2 areas, 746 

tropospheric NO2 column estimates have not changed appreciably from V3.1 to V4.0. Over more 747 

polluted areas, the tropospheric NO2 retrievals have typically increased by 10-40% from V3.1 to 748 

V4.0, mostly in a direct proportion to the pollution level. Most of the increase in the highly polluted 749 

areas is driven by the change in the surface reflectivity data used in the AMF calculation, with 750 

additional increase due to changes in the cloud parameters. Changes in the stratospheric NO2 751 

estimates are usually within ±2.5%, which is close to the range of estimated uncertainties of 752 

stratospheric NO2 estimates. 753 

A global assessment of V4.0 tropospheric and stratospheric NO2 products was performed by a 754 

thorough evaluation of their consistency with the data from V3.1, which was carefully evaluated 755 

in our previous works (e.g., Krotkov et al., 2017; Choi et al., 2020). In addition, we use 756 

NO2 measurements made by independent ground- and aircraft-based instruments to evaluate the 757 

V4.0 product. The comparison of OMI total column NO2 data with collocated Pandora 758 

observations at its 18 global network and 20 DISCOVER-AQ locations suggests that OMI and 759 

Pandora are generally highly consistent, exhibit similar seasonal variation, and agree within their 760 
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expected uncertainties of 2.7x1015 molec cm-2 for Pandora (Herman et al., 2009) and ~30% for 761 

OMI under clear-sky conditions (Boersma et al., 2011; Bucsela et al., 2013). Individual data points 762 

differ considerably, and OMI tends to be lower than Pandora over highly polluted areas with 763 

spatially inhomogeneous NO2. The comparison of OMI tropospheric NO2 column retrievals with 764 

columns derived from the aircraft spirals and surface data during the DISCOVER-AQ campaign 765 

also suggests general agreement in spatial variation, but OMI values are about a factor of two 766 

lower in polluted environments. This difference is due partly to inaccurate a priori assumptions, 767 

but primarily to relatively OMI’s large pixels. The use of observed NO2 profiles as a priori 768 

information reduces the bias from ~50% to 23%, on average. The  Multiple-Axis Differential 769 

Optical Absorption Spectrometer (MAX-DOAS) (e.g., Chan et al., 2019) or high spatial resolution 770 

measurements from aircraft (e.g., Nowlan et al., 2016; Lamsal et al., 2017; Judd et al., 2019) would 771 

provide a more comprehensive validation by mapping the NO2 distributions over the complete 772 

areas of aircraft spirals and the satellite FOVs. 773 

In this study, we focused on improving the surface and cloud parameters in the NASA standard 774 

NO2 product retrievals. To further improve the retrieval accuracy, it is important to incorporate 775 

improved retrieval methods and auxiliary information, such as high resolution a priori NO2 776 

profiles. For instance, current cloud algorithms based on the MLER model treat aerosols implicitly 777 

by providing effective (cloud + aerosol) CRF and effective cloud OCP, both necessary inputs for 778 

AMF calculations. Cloud effects on trace gas retrievals can be compromised by the unknown 779 

aerosol effects, which lead to errors in AMF calculations. Therefore, the use of the GLER product 780 

in the NO2 algorithm will greatly benefit from an explicit accounting for aerosol effects, 781 

particularly over polluted regions. We have recently developed an explicit and consistent aerosol 782 

correction method which can be applied consistently in both the cloud and NO2 retrievals 783 

(Vasilkov et al. 2020); it uses a model of the aerosol optical properties from a global aerosol 784 

assimilation system paired with radiative transfer calculations. This approach allows us to account 785 

for aerosols within the OMI cloud and NO2 algorithms with relatively small changes and will be 786 

used in the next version of the NO2 algorithm. 787 

 788 

Code/Data availability: The Level-2 swath type column NO2 products (OMNO2) is available 789 

from the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) 790 

website (https://disc.gsfc.nasa.gov/datasets/OMNO2G_003/summary). Other OMNO2-associated 791 
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NO2 products such as the Level-2 gridded column product, OMNO2G, and the Level-3 gridded 792 

column product, OMNO2d, both sampled at regular 0.25° latitude x 0.25° longitude wide grids are 793 

distributed through the NASA GES-DISC 794 

(https://disc.gsfc.nasa.gov/datasets/OMNO2d_003/summary) and GIOVANNI 795 

(https://giovanni.gsfc.nasa.gov/giovanni/) websites. An additional high spatial resolution (0.1° x 796 

0.1° latitude-longitude grid) OMNO2d product (OMNO2d_HR) is also made available through 797 

the NASA AVDC website 798 

(https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L3/OMNO2d_HR/). The AVDC 799 

website also hosts overpass files for several hundred sites around the globe 800 

(https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L2OVP/OMNO2/). 801 
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 1253 
Figure 1:  Schematic diagram of the NASA OMI NO2 algorithm, version 4.0, which is coupled 1254 
with the cloud and geometry-dependent surface Lambertian Equivalent Reflectivity (GLER) 1255 
algorithms that ultimately produces stratospheric (strat) and tropospheric (trop) NO2 vertical 1256 
column densities (VCDs). Acronyms used here are described in relevant sections below. 1257 
VLIDORT: Vector Linearized Discrete Ordinate Radiative Transfer; MODIS: Moderate 1258 
Resolution Imaging Spectro-radiometer; BRDF: bidirectional reflectance distribution function; 1259 
DEM: Digital Elevation Model; NISE: Near-real-time Ice and Snow Extent; AMSR-E: Advanced 1260 
Microwave Scanning Radiometer for Earth Observing System (EOS); SSMIS: Special Sensor 1261 
Microwave Imager / Sounder; GEOS-5: Goddard Earth Observing System, Version 5; ECF: 1262 
Effective Cloud Fraction; CRF: Cloud Radiance Fraction; OCP: Optical Centroid Pressure; Sw: 1263 
Scattering weight; LUT: Look-up table GMI: Global Modeling Initiative; AMF: Air Mass Factor; 1264 
SCD: Slant Column Density. 1265 
 1266 
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 1267 

Figure 2: Surface reflectivity at 440 nm (top) derived using MODIS BRDF data with OMI 1268 

geometry (GLER) on March 20, 2005 compared with (middle) OMI-based monthly LER 1269 

climatology (OMLER) for the month of March (Kleipool et al., 2008). The bottom panel shows 1270 

the difference between MODIS-based and climatological surface reflectivity data. 1271 
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 1272 

Figure 3: Differences (V4.0 – V3.1) in (a) surface reflectivity, (b) cloud radiance fraction, and (c) 1273 

cloud optical centroid pressure for March 20, 2005, as used in V3.1 and V4.0 algorithms and 1274 

binned by the values of corresponding parameters from V4.0. Data are separated for land (blue) 1275 

and ocean surfaces, and by sunglint (green) and non-sunglint (orange) geometry over ocean. The 1276 

vertical bars represent the standard deviation for each bin of those parameters.   1277 

 1278 
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 1279 

Figure 4: Cloud optical centroid pressure at 477 nm (left) and cloud radiance fraction at 440 nm 1280 

(right) retrieved for March 20, 2005 with OMNO2 V4.0 (top) and V3.1 (middle) algorithms, 1281 

respectively. The bottom rows show their differences. The gray color represents the OMI pixels 1282 

with retrieved cloud pressure equal to terrain pressure in V4.0 on the left and over snow/ice surface 1283 

identified by the NISE flag on the right.  1284 
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 1285 

Figure 5: Impact on tropospheric AMF (i.e., V4.0 – V3.1) from changes in (a) surface reflectivity, 1286 

(b) cloud and surface treatment, (c) terrain pressure, and (d) their combination on March 20, 2005. 1287 

The figure 5(c) inset shows zoomed view of impact over complex terrain in the western US. 1288 
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 1289 

Figure 6: The impact on tropospheric AMF (i.e., V4.0 – V3.1) from changes in (a) surface 1290 

reflectivity, (b) cloud, and (c) their combination for clear and partially cloudy scenes (CRF<0.5) 1291 

on March 20, 2005. Percent differences in tropospheric AMF are sorted by tropospheric NO2 1292 

columns, separating them by land (blue) and ocean, and by sunglint (green) and non-sunglint 1293 

(orange) geometry over ocean. The vertical bars represent the standard deviations for the 1294 

tropospheric NO2 column bins. 1295 

 1296 

 1297 

 1298 

   1299 
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 1300 
Figure 7: The time series of OMI NO2 SCD normalized by the geometric AMF for clear-sky and 1301 

partially cloudy conditions (CRF<0.5) over the Pacific Ocean. The data are separated by cross-1302 

track scan position, comparing the presumably RA-free row 20 (black) with rows 44 (red), 45 1303 

(orange), and 46 (green). The row numbers are 0-based. 1304 

 1305 
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 1306 
Figure 8: Tropospheric (a) and stratospheric (b) NO2 VCD from V4.0 and their differences (c, d) 1307 

with V3.1 data (V4.0 – V3.1) for March 20, 2005. The gray color in the tropospheric NO2 maps 1308 

represent cloudy areas (CRF>0.5). Bottom panels show average (black circles) and standard error 1309 

(vertical bars) of the relative difference, 100 ´ (V4.0 – V3.1)/V3.1, for tropospheric (e) and 1310 

stratospheric (f) NO2 VCDs plotted as a function of respective NO2 column amounts. The green 1311 

symbols represent the logarithm of the number of samples.  1312 
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 1313 
Figure 9: Three-month (June, July, August) average tropospheric NO2 columns for low cloud 1314 

conditions (CRF<0.5) in 2005 over North America (1st row), Europe (2nd row), southern Africa 1315 

(3rd row), and Asia (4th row) from V4.0 (1st column), V3.1 (2nd column), and their difference (V4.0 1316 

– V3.1).  1317 
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 1318 
Figure 10: Same as Figure 9, but for December, January, and February. The gray areas represent 1319 

a lack of good observations as determined by data quality flags. 1320 
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 1321 
Figure 11: The time series of NO2 total columns retrieved from Pandora (black circles) and OMI 1322 

at (a) Izaña, Spain and (b) Greenbelt, Maryland, USA, with the OMI retrievals represented by the 1323 

filled blue (V4.0) and open purple (V3.1) circles. Right panels show monthly variation of NO2 1324 

total columns at (c) Izaña for 2016–2019 and (d) Greenbelt for 2018-2019, as calculated from 1325 

Pandora (black line with filled circles) and OMI measurements (bars). OMI NO2 total columns 1326 
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retrieved with V4.0 (blue) and V3.1 (purple) are separated into tropospheric and stratospheric 1327 

components. The vertical lines represent the standard deviation from the average. 1328 

 1329 

 1330 
Figure 12: The scatter plot of Pandora versus OMI V4.0 (black) and V3.1 (green) average total 1331 

column NO2 for 18 Pandora sites. The vertical and horizontal lines represent the standard 1332 

deviations for Pandora and OMI, respectively. The dotted line represents the 1:1 relationship. 1333 

 1334 

1335 
Figure 13: Site average total (circles) and tropospheric (bars) NO2 column data from P-3B spiral 1336 

(white bars), Pandora (green circles), and OMI (orange and red). The OMI tropospheric columns 1337 
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are derived using GMI-simulated (OMIGMI, orange) and P-3B (OMIobs, red) NO2 profiles. The 1338 

vertical bars for sites with over 2 observations represent the standard deviations.  1339 

 1340 

Table 1. Summary of algorithms and approaches used in the NASA NO2 algorithms versions 3.1 and 4.0 1341 

Algorithm Component Version 3.1 (Released 2018) Version 4.0 (Released 2019) 

 
Spectral 
fit 

NO2 Modified DOAS fit  
(Marchenko et al, 2015) 

Same as in V3.1 

O2-O2  DOAS fit from KNMI 
(Veefkind et al, 2016) 

Modified DOAS fit (Vasilkov 
et al, 2018) 

 
 
 
 
 
 
 
 
AMF 

Terrain 
reflectivity 

Monthly climatology 
(Kleipool et al., 2008) 

Daily GLER data (Vasilkov 
et al., 2017; Qin et al., 2019; 
Fasnacht et al., 2019) 

Terrain pressure At pixel center (calculated 
from terrain height and GMI 
terrain pressure) 

Average over pixel 
(calculated from terrain 
height and GMI terrain 
pressure)  

Cloud pressure 
and fraction 

Operational O2-O2 cloud 
product (OMCLDO2) v2.0 
(Veefkind et al., 2016) 

New O2-O2 cloud product 
(OMCDO2N) derived using 
the GLER product (Vasilkov 
et al., 2018) 

Cloud radiance 
fraction  

Calculated at 440 nm from 
OMCLDO2 v2.0 cloud 
fraction using VLIDORT-
based look-up-table 

Calculated at 440 nm from 
OMCDO2N cloud fraction 
using VLIDORT-based look-
up-table 

Scattering 
weights 

TOMRAD-based look-up 
table 

Same as in V3.1 

A-priori NO2 
profiles 

GMI-derived yearly varying 
monthly mean profiles at 
1°×1.25° 

Same as in V3.1 

Stripe correction Based on data from 30°S - 
5°N of 5 orbits 

Same as in V3.1 

Stratosphere-troposphere 
separation 

Spatial filtering and 
interpolation (Bucsela et al., 
2013), but with minor 
changes in box sizes  

Same as in V3.1 

 1342 
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